A resilient and robust positioning, navigation, and timing (PNT) system is a necessity for the navigation of autonomous vehicles (AVs). Global Navigation Satelite System (GNSS) provides satellite-based PNT services. However, a spoofer can temper an authentic GNSS signal and could transmit wrong position information to an AV. Therefore, a GNSS must have the capability of real-time detection and feedback-correction of spoofing attacks related to PNT receivers, whereby it will help the end-user (autonomous vehicle in this case) to navigate safely if it falls into any compromises. This paper aims to develop a deep reinforcement learning (RL)-based turn-by-turn spoofing attack detection using low-cost in-vehicle sensor data. We have utilized Honda Driving Dataset to create attack and non-attack datasets, develop a deep RL model, and evaluate the performance of the RL-based attack detection model. We find that the accuracy of the RL model ranges from 99.99% to 100%, and the recall value is 100%. However, the precision ranges from 93.44% to 100%, and the f1 score ranges from 96.61% to 100%. Overall, the analyses reveal that the RL model is effective in turn-by-turn spoofing attack detection.
翻译:具有弹性和稳健的定位、导航和定时系统(PNT)是自主飞行器(AV)航行所必需的。全球导航卫星系统(GNSS)提供基于卫星的PNT服务。然而,一个螺旋桨能够调节真正的全球导航卫星系统信号,并将错误的位置信息传送到AV。因此,全球导航卫星系统必须具备实时检测和反馈校正与PNT接收器有关的潜伏攻击的能力,从而帮助最终用户(在此情况下是自动车辆)安全导航,如果它掉入任何妥协中。本文旨在开发一个深层强化学习(RL)基础的旋转式旋转式攻击探测,使用低成本的车辆传感器数据。我们利用Honda Driving数据集创建攻击和非攻击数据集,开发深RL模型,评价基于RL的攻击探测模型的性能。我们发现RL模型的精确度从99.99%到100%不等,回溯值为100%。然而,从93.44%到96.4%的快速翻转动式攻击探测仪,从100.4%到100.1%的精确度,从总体检测到100.1%的精确范围。