One of the foundational results in quantum mechanics is the Kochen-Specker (KS) theorem, which states that any theory whose predictions agree with quantum mechanics must be contextual, i.e., a quantum observation cannot be understood as revealing a pre-existing value. The theorem hinges on the existence of a mathematical object called a KS vector system. While many KS vector systems are known to exist, the problem of finding the minimum KS vector system has remained stubbornly open for over 55 years, despite significant attempts by leading scientists and mathematicians. In this paper, we present a new method based on a combination of a SAT solver and a computer algebra system (CAS) to address this problem. Our approach improves the lower bound on the minimum number of vectors in a KS system from 22 to 24, and is about 35,000 times more efficient compared to the previous best computational methods. The increase in efficiency derives from the fact we are able to exploit the powerful combinatorial search-with-learning capabilities of a SAT solver together with the isomorph-free exhaustive generation methods of a CAS. The quest for the minimum KS vector system is motivated by myriad applications such as simplifying experimental tests of contextuality, zero-error classical communication, dimension witnessing, and the security of certain quantum cryptographic protocols. To the best of our knowledge, this is the first application of a novel SAT+CAS system to a problem in the realm of quantum foundations.
翻译:暂无翻译