The number of battery-powered devices is rapidly increasing due to the widespread use of IoT-enabled nodes in various fields. Energy harvesters, which help to power embedded devices, are a feasible alternative to replacing battery-powered devices. In a capacitor, the energy harvester stores enough energy to power up the embedded device and compute the task. This type of computation is referred to as intermittent computing. Energy harvesters are unable to supply continuous power to embedded devices. All registers and cache in conventional processors are volatile. We require a Non-Volatile Memory (NVM)-based Non-Volatile Processor (NVP) that can store registers and cache contents during a power failure. NVM-based caches reduce system performance and consume more energy than SRAM-based caches. This paper proposes Efficient Placement and Migration policies for hybrid cache architecture that uses SRAM and STT-RAM at the first level cache. The proposed architecture includes cache block placement and migration policies to reduce the number of writes to STT-RAM. During a power failure, the backup strategy identifies and migrates the critical blocks from SRAM to STT-RAM. When compared to the baseline architecture, the proposed architecture reduces STT-RAM writes from 63.35% to 35.93%, resulting in a 32.85% performance gain and a 23.42% reduction in energy consumption. Our backup strategy reduces backup time by 34.46% when compared to the baseline.


翻译:电池动力装置的数量正在迅速增加, 原因是在各个领域广泛使用 IOT 驱动节点。 能源采集器帮助安装嵌入装置, 能源采集器是替换电池动力装置的可行替代方法。 在电容器中, 能源采集器储存的能量足够能量, 以激活嵌入装置并计算任务。 这种计算方式被称为间歇计算。 能源采集器无法向嵌入装置提供连续电源。 常规处理器中的所有存储器和缓存器都不稳定。 我们需要一个非Volatile内存(NVM)型非Volatile处理器(NVP), 它可以在停电期间存储登记和缓存内容。 基于 NVM 的缓存器可以降低系统性能, 消耗的能量超过基于SRAM 的缓存。 本文为混合缓存结构, 使用SRAM 和STT-RAM 的缓存器。 拟议的结构包括缓存区块放置和迁移政策, 以减少给STT- RAM 的书写次数。 在电力故障中, 备份战略确定和迁移关键区块从 SRAM 登记为 ST- 后, 将ST- 递减% 递减后, 递减后, 递减后, 递减后, 递减为 递减 递减 递减为 递减为 23 校算为

0
下载
关闭预览

相关内容

JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员