Point cloud instance segmentation has achieved huge progress with the emergence of deep learning. However, these methods are usually data-hungry with expensive and time-consuming dense point cloud annotations. To alleviate the annotation cost, unlabeled or weakly labeled data is still less explored in the task. In this paper, we introduce the first semi-supervised point cloud instance segmentation framework (SPIB) using both labeled and unlabelled bounding boxes as supervision. To be specific, our SPIB architecture involves a two-stage learning procedure. For stage one, a bounding box proposal generation network is trained under a semi-supervised setting with perturbation consistency regularization (SPCR). The regularization works by enforcing an invariance of the bounding box predictions over different perturbations applied to the input point clouds, to provide self-supervision for network learning. For stage two, the bounding box proposals with SPCR are grouped into some subsets, and the instance masks are mined inside each subset with a novel semantic propagation module and a property consistency graph module. Moreover, we introduce a novel occupancy ratio guided refinement module to refine the instance masks. Extensive experiments on the challenging ScanNet v2 dataset demonstrate our method can achieve competitive performance compared with the recent fully-supervised methods.
翻译:随着深层学习的出现,点云分解取得了巨大的进展。 但是, 这些方法通常是数据饥饿, 且耗时昂贵的密集点云说明。 为了减轻批注成本, 任务中对于未贴标签或贴标签不高的数据的研究仍然较少。 在本文中, 我们引入了第一个半监督的点云分解框架( SPIB ), 使用标签和未贴标签的捆绑框作为监管。 具体地说, 我们的SPIB 架构包含一个两阶段学习程序。 在第一阶段, 一个捆绑箱提案生成网络在半监督的环境下, 接受过扰动一致性规范( SPCR) 的培训。 通过对输入点云应用不同扰动的捆绑框预测进行不易的常规化工作。 在第二阶段, 与 SPCRCR( SPCR) 的捆绑框提案被分组为某些子组, 实例掩埋在每种子组中, 配有新型的语义传播模块和属性一致性图形模块。 此外, 我们引入了一个新的占用率调整模型, 来展示我们最新的升级的模型。