In this article, we present the time-space Chebyshev pseudospectral method (TS-CPsM) to approximate a solution to the generalised Burgers-Fisher (gBF) equation. The Chebyshev-Gauss-Lobatto (CGL) points serve as the foundation for the recommended method, which makes use of collocations in both the time and space directions. Further, using a mapping, the non-homogeneous initial-boundary value problem is transformed into a homogeneous problem, and a system of algebraic equations is obtained. The numerical approach known as Newton-Raphson is implemented in order to get the desired results for the system. The proposed method's stability analysis has been performed. Different researchers' considerations on test problems have been explored to illustrate the robustness and practicality of the approach presented. The approximate solutions we found using the proposed method are highly accurate and significantly better than the existing results.
翻译:暂无翻译