We introduce a method combining variational autoencoders (VAEs) and deep metric learning to perform Bayesian optimisation (BO) over high-dimensional and structured input spaces. By adapting ideas from deep metric learning, we use label guidance from the blackbox function to structure the VAE latent space, facilitating the Gaussian process fit and yielding improved BO performance. Importantly for BO problem settings, our method operates in semi-supervised regimes where only few labelled data points are available. We run experiments on three real-world tasks, achieving state-of-the-art results on the penalised logP molecule generation benchmark using just 3% of the labelled data required by previous approaches. As a theoretical contribution, we present a proof of vanishing regret for VAE BO.
翻译:我们引入了一种将变式自动计算器(VAE)和深层次计量学习相结合的方法,以在高维和结构化输入空间上实现贝叶斯优化(BO) 。 通过从深度计量学习中调整想法,我们使用黑盒功能的标签指导来构建VAE潜在空间,促进高斯进程适合并产生更好的BO性能。对于BO问题设置来说,重要的是,我们的方法在半监督的系统中运作,那里只有很少的贴标签数据点。我们用以往方法所需的贴标签数据的3%数据,对三种真实世界任务进行了实验,在惩罚性日志分子生成基准上取得了最先进的结果。作为理论贡献,我们为VAEBO提供了一种消失遗憾的证据。