Accurate simulation of soft mechanisms under dynamic actuation is critical for the design of soft robots. We address this gap with our differentiable simulation tool by learning the material parameters of our soft robotic fish. On the example of a soft robotic fish, we demonstrate an experimentally-verified, fast optimization pipeline for learning the material parameters from quasi-static data via differentiable simulation and apply it to the prediction of dynamic performance. Our method identifies physically plausible Young's moduli for various soft silicone elastomers and stiff acetal copolymers used in creation of our three different robotic fish tail designs. We show that our method is compatible with varying internal geometry of the actuators, such as the number of hollow cavities. Our framework allows high fidelity prediction of dynamic behavior for composite bi-morph bending structures in real hardware to millimeter-accuracy and within 3 percent error normalized to actuator length. We provide a differentiable and robust estimate of the thrust force using a neural network thrust predictor; this estimate allows for accurate modeling of our experimental setup measuring bollard pull. This work presents a prototypical hardware and simulation problem solved using our differentiable framework; the framework can be applied to higher dimensional parameter inference, learning control policies, and computational design due to its differentiable character.


翻译:在动态激活下精确模拟软机制对于设计软机器人至关重要。 我们通过学习软机器人鱼的物质参数, 以我们不同的模拟工具来解决这一差距。 在软机器人鱼的例子中, 我们展示了一种实验性快速优化管道, 以通过不同模拟从准静态数据中学习材料参数, 并将其应用于动态性能的预测。 我们的方法确定了各种软硅酮弹性活性器和坚硬的电动共聚体在创建我们三种不同的机器人尾鱼设计时所使用的物理上看似合理的模范。 我们展示了我们的方法与不同导体的内部几何测量方法相容,例如空洞数量。 我们的框架允许对在实际硬件到毫米准确度的复合双向弯曲结构中和在3%的误差范围内对动态性能进行高度正常化的动态预测。 我们用一个神经网络推进器提供了一种不同和可靠的推力估计值; 我们的这一估计使得我们实验性定型模型能够测量巨型尾鱼的物理特性,例如空洞洞洞洞洞洞洞。 我们的框架允许对复合双曲结构进行高度的动态预测, 这个工程模拟和进化的推算法, 将用来测量我们不同的研算。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月1日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
23+阅读 · 2021年3月4日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员