Today's robots often interface with data-driven perception and planning models with classical model-predictive controllers (MPC). Often, such learned perception/planning models produce erroneous waypoint predictions on out-of-distribution (OoD) or even adversarial visual inputs, which increase control costs. However, today's methods to train robust perception models are largely task-agnostic - they augment a dataset using random image transformations or adversarial examples targeted at the vision model in isolation. As such, they often introduce pixel perturbations that are ultimately benign for control. In contrast to prior work that synthesizes adversarial examples for single-step vision tasks, our key contribution is to synthesize adversarial scenarios tailored to multi-step, model-based control. To do so, we use differentiable MPC methods to calculate the sensitivity of a model-based controller to errors in state estimation. We show that re-training vision models on these adversarial datasets improves control performance on OoD test scenarios by up to 36.2% compared to standard task-agnostic data augmentation. We demonstrate our method on examples of robotic navigation, manipulation in RoboSuite, and control of an autonomous air vehicle.
翻译:今天的机器人往往与传统的模型预测控制器(MPC)的由数据驱动的感知和规划模型(MPC)相交。通常,这种所学的感知/规划模型在分配(OoD)或甚至对立视觉输入方面产生错误的偏差点预测,从而增加控制成本。然而,今天培养强健的感知模型的方法主要是任务-不可知性——它们利用随机图像转换或孤立地针对视觉模型的对立示例来增加数据集。因此,它们往往引入最终无害于控制的像素过错的触摸/扰动模型。与以前为单步视觉任务合成对立示例的工作相比,我们的主要贡献是合成适合多步、基于模型的控制的对立情景。为了做到这一点,我们使用不同的MPC方法来计算模型控制器对国家估计错误的敏感性。我们展示了这些对对抗性数据集进行再培训的视觉模型可以提高OOD测试情景的控制性,比标准任务-认知数据增强能力高36.2%。我们展示了我们机器人导航、自主操纵和自动控制飞行器的方法。