Random-effects meta-analysis within a hierarchical normal modeling framework is commonly implemented in a wide range of evidence synthesis applications. More general problems may even be tackled when considering meta-regression approaches that in addition allow for the inclusion of study-level covariables. Here we describe the Bayesian meta-regression implementation provided in the bayesmeta R package including the choice of priors. To illustrate its practical use, a wide range of example applications are given such as binary and continuous covariables, subgroup analysis, indirect comparisons, and model selection. Example R code is provided, and, due to the avoidance of MCMC methods, computations are fast and reproducible, faciliting e.g. large-scale simulation studies.
翻译:在等级正常模型框架内的随机效应元分析通常在一系列广泛的证据综合应用中实施,在考虑元回归方法时甚至可以解决更为普遍的问题,这些方法还允许纳入研究水平的共变量。这里我们介绍巴耶斯元回归方案包中提供的巴伊西亚元回归实施情况,包括前科的选择。为说明其实际用途,提供了广泛的实例应用,如二进制和连续共变量、分组分析、间接比较和模型选择。提供了例R代码,由于避免了MCMC方法,计算是快速和可复制的,例如大规模模拟研究。