In this paper, we tackle the challenging problem of point cloud completion from the perspective of feature learning. Our key observation is that to recover the underlying structures as well as surface details, given partial input, a fundamental component is a good feature representation that can capture both global structure and local geometric details. We accordingly first propose FSNet, a feature structuring module that can adaptively aggregate point-wise features into a 2D structured feature map by learning multiple latent patterns from local regions. We then integrate FSNet into a coarse-tofine pipeline for point cloud completion. Specifically, a 2D convolutional neural network is adopted to decode feature maps from FSNet into a coarse and complete point cloud. Next, a point cloud upsampling network is used to generate a dense point cloud from the partial input and the coarse intermediate output. To efficiently exploit local structures and enhance point distribution uniformity, we propose IFNet, a point upsampling module with a self-correction mechanism that can progressively refine details of the generated dense point cloud. We have conducted qualitative and quantitative experiments on ShapeNet, MVP, and KITTI datasets, which demonstrate that our method outperforms state-of-theart point cloud completion approaches.
翻译:在本文中,我们从特征学习的角度处理点云完成这一具有挑战性的问题。我们的关键观察是,在部分投入的情况下,为了恢复基础结构以及表面细节,一个基本组成部分是能够捕捉全球结构和地方几何细节的良好特征代表特征。因此,我们首先提议FSNet,一个能够适应综合点特点的功能结构模块,通过学习来自当地区域的多种潜伏模式,将2D点云完成的点云完成点。然后,我们将FSNet纳入一个粗糙的管道中。具体地说,我们采用了2D进化神经网络,将FSNet的地貌地图从FSNet解码成一个粗糙和完整的点云。接下来,利用点云扩大网络从部分投入和粗略中间输出中生成一个密度点云。为了有效地利用当地结构,加强点分布的统一性,我们提议IFNet,一个带有自我校正机制的点扫描模块,可以逐步完善所生成的密度云的细节。我们已经在ShapeNet、MVP和KITTI的云层完成方式上进行了定性和定量实验。