We study differentially private stochastic optimization in convex and non-convex settings. For the convex case, we focus on the family of non-smooth generalized linear losses (GLLs). Our algorithm for the $\ell_2$ setting achieves optimal excess population risk in near-linear time, while the best known differentially private algorithms for general convex losses run in super-linear time. Our algorithm for the $\ell_1$ setting has nearly-optimal excess population risk $\tilde{O}\big(\sqrt{\frac{\log{d}}{n\varepsilon}}\big)$, and circumvents the dimension dependent lower bound of \cite{Asi:2021} for general non-smooth convex losses. In the differentially private non-convex setting, we provide several new algorithms for approximating stationary points of the population risk. For the $\ell_1$-case with smooth losses and polyhedral constraint, we provide the first nearly dimension independent rate, $\tilde O\big(\frac{\log^{2/3}{d}}{{(n\varepsilon)^{1/3}}}\big)$ in linear time. For the constrained $\ell_2$-case with smooth losses, we obtain a linear-time algorithm with rate $\tilde O\big(\frac{1}{n^{1/3}}+\frac{d^{1/5}}{(n\varepsilon)^{2/5}}\big)$. Finally, for the $\ell_2$-case we provide the first method for {\em non-smooth weakly convex} stochastic optimization with rate $\tilde O\big(\frac{1}{n^{1/4}}+\frac{d^{1/6}}{(n\varepsilon)^{1/3}}\big)$ which matches the best existing non-private algorithm when $d= O(\sqrt{n})$. We also extend all our results above for the non-convex $\ell_2$ setting to the $\ell_p$ setting, where $1 < p \leq 2$, with only polylogarithmic (in the dimension) overhead in the rates.
翻译:在 convex 和非 convex 设置中, 我们研究不同的私人共享优化 。 在 convex 中, 我们只研究 $_ $1 设置中 。 对于 convex 来说, 我们关注的是非moth 通用线性损失( GLLs) 的家族。 我们的 $_ $_ 2 的算法在近线性时间里实现了最佳的超人口风险。 而对于普通的 convex 损失来说, 我们的 $_ ell_ 1 设置的算法只有近乎最佳的超人口风险 $( dede) (Oñbig (\ sqrt) $$ (d) 美元= 美元 (d_ vaxn\ vreql) 普通 。 当 美元=% = =% = = dralx 平滑度损失时, 我们第一次提供了 美元 独立汇率 的 。 美元\\\\\\\\\\\\\\\\\\\\ max lax ral lax ral lax lax ral ral ral ral r=x ral ral r=x