In this paper, we consider the widely used but not fully understood stochastic estimator based on moving average (SEMA), which only requires {\bf a general unbiased stochastic oracle}. We demonstrate the power of SEMA on a range of stochastic non-convex optimization problems. In particular, we analyze various stochastic methods (existing or newly proposed) based on the {\bf variance recursion property} of SEMA for three families of non-convex optimization, namely standard stochastic non-convex minimization, stochastic non-convex strongly-concave min-max optimization, and stochastic bilevel optimization. Our contributions include: (i) for standard stochastic non-convex minimization, we present a simple and intuitive proof of convergence for a family of Adam-style methods (including Adam, AMSGrad, AdaBound, etc.) with an increasing or large "momentum" parameter for the first-order moment, which gives an alternative yet more natural way to guarantee Adam converge; (ii) for stochastic non-convex strongly-concave min-max optimization, we present a single-loop primal-dual stochastic momentum and adaptive methods based on the moving average estimators and establish its oracle complexity of $O(1/\epsilon^4)$ without using a large mini-batch size, addressing a gap in the literature; (iii) for stochastic bilevel optimization, we present a single-loop stochastic method based on the moving average estimators and establish its oracle complexity of $\widetilde O(1/\epsilon^4)$ without computing the SVD of the Hessian matrix, improving state-of-the-art results. For all these problems, we also establish a variance diminishing result for the used stochastic gradient estimators.
翻译:在本文中, 我们考虑基于移动平均值( SEMA) 的广泛使用但并不完全理解的 SEMA 。 我们展示了 SEMA 在一系列随机的非convex优化问题上的力量。 特别是, 我们分析了基于 & bf 差异循环属性的 SEMA 的各种随机方法( 包括 Adam、 AMSGrad、 AdaBound等) 的三组非conex优化, 即标准的 STOchatial 复杂度非colive 最小化( SEMA ), 它只需要 & butchetrial 复杂度的 Ox 强相近性小卡4 软化小卡片尺寸优化和双级优化。 我们的贡献包括:( i) 用于标准的直观非chochet- 最小化方法( 包括 Adam、 AMSGrad、 AdaBound 等 ) 。 在一阶时的“ momentalum” 参数增加或大个值, 使一个替代但更不自然的方式 使用 AStial ral modeal ortial ortial ortical 。 (ii) ortial- sal) ortical- sal to sal to saltistal) ortical- saltical- saltical- sal- saltical- sal- sal- sal- saltical- sal- salticalticaltical- saltical- saltical- sal- sal- sal- sal- salticaltical- sal- saltial- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal-