Model mismatches prevail in real-world applications. Ensuring safety for systems with uncertain dynamic models is critical. However, existing robust safe controllers may not be realizable when control limits exist. And existing methods use loose over-approximation of uncertainties, leading to conservative safe controls. To address these challenges, we propose a control-limits aware robust safe control framework for bounded state-dependent uncertainties. We propose safety index synthesis to find a robust safe controller guaranteed to be realizable under control limits. And we solve for robust safe control via Convex Semi-Infinite Programming, which is the tightest formulation for convex bounded uncertainties and leads to the least conservative control. In addition, we analyze when and how safety can be preserved under unmodeled uncertainties. Experiment results show that our robust safe controller is always realizable under control limits and is much less conservative than strong baselines.
翻译:模型不匹配在现实世界应用中普遍存在。 确保具有不确定动态模型的系统的安全至关重要 。 但是, 现有的稳健安全控制器在控制限度存在时可能无法实现 。 现有的方法使用松散的过度使用不确定因素, 导致保守的安全控制 。 为了应对这些挑战, 我们提议了一个能够了解受约束的受国家依赖的不确定因素的严格安全控制框架的控制控制器 。 我们提议了安全指数合成, 以便找到一个在控制限度下可以实现的稳健安全控制器 。 我们通过Convex 半不完全计划( Convex 半不完全规划) 解决了强健的安全控制问题, 后者是被封闭的不确定因素中最紧凑的配方, 并导致最保守的控制 。 此外, 我们分析在未建模的不确定因素下安全何时以及如何得以保全 。 实验结果表明, 我们稳健的安全控制器总是在控制限度下实现, 并且比强的基线更保守得多 。</s>