We propose a restricted SVD based CUR (RSVD-CUR) decomposition for matrix triplets $(A, B, G)$. Given matrices $A$, $B$, and $G$ of compatible dimensions, such a decomposition provides a coordinated low-rank approximation of the three matrices using a subset of their rows and columns. We pick the subset of rows and columns of the original matrices by applying the discrete empirical interpolation method (DEIM) to the orthogonal and nonsingular matrices from the restricted singular value decomposition of the matrix triplet. We investigate the connections between this DEIM type RSVD-CUR approximation and a DEIM type CUR factorization, and a DEIM type generalized CUR decomposition. We provide an error analysis that shows that the accuracy of the proposed RSVD-CUR decomposition is within a factor of the approximation error of the restricted singular value decomposition of given matrices. An RSVD-CUR factorization may be suitable for applications where we are interested in approximating one data matrix relative to two other given matrices. Two applications that we discuss include multi-view and multi-label dimension reduction, and data perturbation problems of the form $A_E=A + BFG$, where $BFG$ is a nonwhite noise matrix. In numerical experiments, we show the advantages of the new method over the standard CUR approximation for these applications.
翻译:我们建议对基质三重体(A、B、G)进行基于SVD的基于SVD的CUR(RSVD-CUR)限制的三重基体分解(RSVD-CUR) 。 对于基质三重体(A、B、G),我们建议对基质三重体(A、B、G)进行限制性的SVD基基体分解(RSVD-CUR)。鉴于矩阵四重基体(RSVD-CUR)和兼容维维维维维维维维基体($)的美元和GG$($G)的基体,这种分解能提供三重基体协调的低调近似近似。我们提供了一种错误分析,表明拟议的RSVD-CUR分解的精度是在给定基体的单异异体分解(DEIM)的近似误差因素范围内。 RSVD-CUR因子化可能适合我们有兴趣对基质-CVD-CUR(CUR)的近似和DEIM CUR(CUR)的近似数据基体)应用进行对比一个数据矩阵的基体和两个新的基质化的基质化。我们讨论这些基质的多基质的基质的基质的基体的BA。