We propose iterative projection methods for solving square or rectangular consistent linear systems $Ax = b$. Projection methods use sketching matrices (possibly randomized) to generate a sequence of small projected subproblems, but even the smaller systems can be costly. We develop a process that appends one column each iteration to the sketching matrix and that converges in a finite number of iterations independent of whether the sketch is random or deterministic. In general, our process generates orthogonal updates to the approximate solution $x_k$. By choosing the sketch to be the set of all previous residuals, we obtain a simple recursive update and convergence in at most rank($A$) iterations (in exact arithmetic). By choosing a sequence of identity columns for the sketch, we develop a generalization of the Kaczmarz method. In experiments on large sparse systems, our method (PLSS) with residual sketches is competitive with LSQR, and our method with residual and identity sketches compares favorably to state-of-the-art randomized methods.
翻译:我们提出了解决平方或长方一致线性系统的迭代预测方法 $Ax = b$。预测方法使用草图矩阵(可能是随机的)来产生一个小预测子问题序列,但即使较小系统也可能费用高昂。我们开发了一个过程,将每个迭代的一列附加在草图矩阵中,并且以数量有限的迭代相交,而不论草图是随机的还是确定性的。一般来说,我们的过程产生近似解决方案的正方位更新 $x_k$。通过选择草图作为所有以往遗留物的组合,我们获得了最简单的递归更新和趋同,以最高等级($A$)的迭代(精确算术)。通过为草图选择一个身份列序列,我们开发了Kaczmarz方法的概括性。在大型稀薄系统实验中,我们使用残余草图的方法(PRSS)与LSQR具有竞争力,而我们使用残余和身份草图的方法则优于国家随机方法。