Since the seminal result of Karger, Motwani, and Sudan, algorithms for approximate 3-coloring have primarily centered around SDP-based rounding. However, it is likely that important combinatorial or algebraic insights are needed in order to break the $n^{o(1)}$ threshold. One way to develop new understanding in graph coloring is to study special subclasses of graphs. For instance, Blum studied the 3-coloring of random graphs, and Arora and Ge studied the 3-coloring of graphs with low threshold-rank. In this work, we study graphs which arise from a tensor product, which appear to be novel instances of the 3-coloring problem. We consider graphs of the form $H = (V,E)$ with $V =V( K_3 \times G)$ and $E = E(K_3 \times G) \setminus E'$, where $E' \subseteq E(K_3 \times G)$ is any edge set such that no vertex has more than an $\epsilon$ fraction of its edges in $E'$. We show that one can construct $\widetilde{H} = K_3 \times \widetilde{G}$ with $V(\widetilde{H}) = V(H)$ that is close to $H$. For arbitrary $G$, $\widetilde{H}$ satisfies $|E(H) \Delta E(\widetilde{H})| \leq O(\epsilon|E(H)|)$. Additionally when $G$ is a mild expander, we provide a 3-coloring for $H$ in polynomial time. These results partially generalize an exact tensor factorization algorithm of Imrich. On the other hand, without any assumptions on $G$, we show that it is NP-hard to 3-color $H$.
翻译:Karger、 Motwani 和苏丹的创性结果以来, 大约 3 彩色的算法主要围绕基于 SDP 的四舍五入 。 然而, 为了打破 $@ o(1)} 门槛, 可能需要重要的组合或代数洞察。 在图形颜色中形成新理解的方法之一是研究图解的特殊子类。 例如, Blum 研究了随机图的 3 色, Arora 和 Ge 研究了 3 彩色图的底色。 在这项工作中, 我们研究由 Exor 产品产生的图表, 这似乎是3 彩色问题的新例子。 我们考虑的是 $H= (V) = V (K_ 3\ time G) 和 $ = E (K_ 3) 平面图解的底色图解 。 美元= 美元 美元 美元( 美元) 美元= 美元( 美元) 美元= 美元( 美元) 美元( 美元) 的底數數數數 。 以任何 美元( 美元) = 美元 以內, 我們的底 美元= 美元 美元 的底的底數值顯示顯示的底數值 。