The horseshoe prior, defined as a half Cauchy scale mixture of normal, provides a state of the art approach to Bayesian sparse signal recovery. We provide a new representation of the horseshoe density as a scale mixture of the Laplace density, explicitly identifying the mixing measure. Using the celebrated Bernstein--Widder theorem and a result due to Bochner, our representation immediately establishes the complete monotonicity of the horseshoe density and strong concavity of the corresponding penalty. Consequently, the equivalence between local linear approximation and expectation--maximization algorithms for finding the posterior mode under the horseshoe penalized regression is established. Further, the resultant estimate is shown to be sparse.
翻译:前面的马蹄木被定义为正常的半Cauchy比例混和,为Bayesian稀有信号恢复提供了一种最先进的方法。我们提供了马蹄木密度的新表示,作为Laplace密度的一个比例混合体,明确标明混合度。我们使用著名的Bernstein-Widder定理仪,并使用Bochner的结果,我们的代表立即确定了马蹄木密度的完全单一性和相应惩罚的强烈混杂性。因此,确定了在马蹄木受禁的回归下找到后方模式的当地直线近似和预期-最大程度的算法的等值。此外,由此得出的估计数字被显示为稀少。