We investigate the contraction coefficients derived from strong data processing inequalities for the $E_\gamma$-divergence. By generalizing the celebrated Dobrushin's coefficient from total variation distance to $E_\gamma$-divergence, we derive a closed-form expression for the contraction of $E_\gamma$-divergence. This result has fundamental consequences in two privacy settings. First, it implies that local differential privacy can be equivalently expressed in terms of the contraction of $E_\gamma$-divergence. This equivalent formula can be used to precisely quantify the impact of local privacy in (Bayesian and minimax) estimation and hypothesis testing problems in terms of the reduction of effective sample size. Second, it leads to a new information-theoretic technique for analyzing privacy guarantees of online algorithms. In this technique, we view such algorithms as a composition of amplitude-constrained Gaussian channels and then relate their contraction coefficients under $E_\gamma$-divergence to the overall differential privacy guarantees. As an example, we apply our technique to derive the differential privacy parameters of gradient descent. Moreover, we also show that this framework can be tailored to batch learning algorithms that can be implemented with one pass over the training dataset.


翻译:我们调查了从强烈的数据处理不平等中得出的收缩系数, 以美元为单位。 通过将著名的Dobrushin 系数从总变差距离到总变差距离到 $Egamma$- 振幅的变速率加以概括, 我们得出了一种封闭式的表达方式, 收缩了 $Eçgamma$- 振幅。 这个结果在两种隐私环境中产生了根本后果。 首先, 它意味着当地差异隐私权可以以美元为单位, 以美元为单位表示收缩。 这个等值公式可以用来精确量化( 巴耶和迷你马克斯) 本地隐私估计和假设测试问题的影响, 以降低有效样本大小为单位。 其次, 它导致一种新的信息理论技术, 用于分析在线算法的隐私保障。 在这种技术中, 我们把这种算法看成是适应性高斯频道的构成, 然后将其收缩系数与总体差异性隐私保障联系起来。 例如, 我们应用我们的技术, 来得出差异性隐私参数的参数, 并且可以显示, 一种经过 梯级 学习 。

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2022年8月16日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
92+阅读 · 2021年5月17日
Arxiv
14+阅读 · 2021年3月10日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关VIP内容
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员