We investigate the contraction coefficients derived from strong data processing inequalities for the $E_\gamma$-divergence. By generalizing the celebrated Dobrushin's coefficient from total variation distance to $E_\gamma$-divergence, we derive a closed-form expression for the contraction of $E_\gamma$-divergence. This result has fundamental consequences in two privacy settings. First, it implies that local differential privacy can be equivalently expressed in terms of the contraction of $E_\gamma$-divergence. This equivalent formula can be used to precisely quantify the impact of local privacy in (Bayesian and minimax) estimation and hypothesis testing problems in terms of the reduction of effective sample size. Second, it leads to a new information-theoretic technique for analyzing privacy guarantees of online algorithms. In this technique, we view such algorithms as a composition of amplitude-constrained Gaussian channels and then relate their contraction coefficients under $E_\gamma$-divergence to the overall differential privacy guarantees. As an example, we apply our technique to derive the differential privacy parameters of gradient descent. Moreover, we also show that this framework can be tailored to batch learning algorithms that can be implemented with one pass over the training dataset.
翻译:我们调查了从强烈的数据处理不平等中得出的收缩系数, 以美元为单位。 通过将著名的Dobrushin 系数从总变差距离到总变差距离到 $Egamma$- 振幅的变速率加以概括, 我们得出了一种封闭式的表达方式, 收缩了 $Eçgamma$- 振幅。 这个结果在两种隐私环境中产生了根本后果。 首先, 它意味着当地差异隐私权可以以美元为单位, 以美元为单位表示收缩。 这个等值公式可以用来精确量化( 巴耶和迷你马克斯) 本地隐私估计和假设测试问题的影响, 以降低有效样本大小为单位。 其次, 它导致一种新的信息理论技术, 用于分析在线算法的隐私保障。 在这种技术中, 我们把这种算法看成是适应性高斯频道的构成, 然后将其收缩系数与总体差异性隐私保障联系起来。 例如, 我们应用我们的技术, 来得出差异性隐私参数的参数, 并且可以显示, 一种经过 梯级 学习 。