This paper is concerned with the estimation of the partial derivatives of a probability density function of directional data on the $d$-dimensional torus within the local thresholding framework. The estimators here introduced are built by means of the toroidal needlets, a class of wavelets characterized by excellent concentration properties in both the real and the harmonic domains. In particular, we discuss the convergence rates of the $L^p$-risks for these estimators, investigating on their minimax properties and proving their optimality over a scale of Besov spaces, here taken as nonparametric regularity function spaces.


翻译:本文涉及对当地阈值框架范围内美元维值横截面方向数据概率密度函数部分衍生物的估计,此处引入的估测器是通过近似需要建造的,这是在真实和和谐领域均具有极佳浓度特性的波子类。特别是,我们讨论了这些测算器的美元-风险汇合率,调查其微量成份特性,并证明其在贝索夫空间的尺度上的最佳性,这里将它视为非对称常规功能空间。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
德先生
53+阅读 · 2019年4月28日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
德先生
53+阅读 · 2019年4月28日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员