We present a diffuse-interface model for the solid-state dewetting problem with anisotropic surface energies in ${\mathbb R}^d$ for $d\in\{2,3\}$. The introduced model consists of the anisotropic Cahn--Hilliard equation, with either a smooth or a double-obstacle potential, together with a degenerate mobility function and appropriate boundary conditions on the wall. Upon regularizing the introduced diffuse-interface model, and with the help of suitable asymptotic expansions, we recover as the sharp-interface limit the anisotropic surface diffusion flow for the interface together with an anisotropic Young's law and a zero-flux condition at the contact line of the interface with a fixed external boundary. Furthermore, we show the existence of weak solutions for the regularized model, for both smooth and obstacle potential. Numerical results based on an appropriate finite element approximation are presented to demonstrate the excellent agreement between the proposed diffuse-interface model and its sharp-interface limit.


翻译:我们为固态退退问题提出了一个扩散界面模型,以美元为美元,以2,3美元为单位,以美元为单位,用美元为单位,用美元为单位,用美元为单位,用美元为单位,用美元为单位,用美元为单位,用美元为单位,用美元为单位,用美元为单位,用美元为单位,用美元为单位,用美元为单位,以美元为单位,用美元为单位,以美元为单位,用美元为单位,用美元为单位,用美元为单位,以美元为单位,用美元为单位,以美元为单位,用美元为单位,用美元为单位,以美元为单位,用美元为单位,用美元为单位,以美元为单位,以美元为单位,用美元为单位,以美元为单位,用美元为单位,用美元为单位,用美元为单位,以美元为单位,以美元为单位,用美元为单位,用美元为单位,用美元为单位,用美元为单位,用美元为单位,用美元为单位,用美元为单位,用美元为单位,用美元为单位,用美元为单位,用美元为单位,以美元为单位,用美元为单位,用美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元,以美元为单位,以美元为单位,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月12日
Arxiv
0+阅读 · 2023年2月10日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员