Federated learning (FL) allows multiple participants to collaboratively build deep learning (DL) models without directly sharing data. Consequently, the issue of copyright protection in FL becomes important since unreliable participants may gain access to the jointly trained model. Application of homomorphic encryption (HE) in secure FL framework prevents the central server from accessing plaintext models. Thus, it is no longer feasible to embed the watermark at the central server using existing watermarking schemes. In this paper, we propose a novel client-side FL watermarking scheme to tackle the copyright protection issue in secure FL with HE. To our best knowledge, it is the first scheme to embed the watermark to models under the Secure FL environment. We design a black-box watermarking scheme based on client-side backdooring to embed a pre-designed trigger set into an FL model by a gradient-enhanced embedding method. Additionally, we propose a trigger set construction mechanism to ensure the watermark cannot be forged. Experimental results demonstrate that our proposed scheme delivers outstanding protection performance and robustness against various watermark removal attacks and ambiguity attack.
翻译:联邦学习(FL)允许多个参与者在不直接分享数据的情况下合作建立深层次学习(DL)模式。因此,FL版权保护问题变得非常重要,因为不可靠的参与者可能有机会接触联合培训模式。在安全的FL框架内应用同质加密(HE)阻止中央服务器访问简便文本模式。因此,利用现有的水标志计划将水标记嵌入中央服务器已不再可行。在本文件中,我们提议了一个新的客户端FL水标记计划,以便在与HE安全FL一起的安全FL中解决版权保护问题。据我们所知,这是将水标记嵌入安全FL环境下的模型的第一个计划。我们设计了一个黑箱水标记计划,以客户侧的后门为基础,将预先设计的触发器嵌入由梯度增强嵌入法的FL模型。此外,我们提议了一个启动机制,以确保水标记无法伪造。实验结果表明,我们拟议的计划提供了出色的保护性能和稳健性,防止各种水标记攻击和模糊性攻击。</s>