This paper presents the novel way combining the BERT embedding method and the graph convolutional neural network. This combination is employed to solve the text classification problem. Initially, we apply the BERT embedding method to the texts (in the BBC news dataset and the IMDB movie reviews dataset) in order to transform all the texts to numerical vector. Then, the graph convolutional neural network will be applied to these numerical vectors to classify these texts into their ap-propriate classes/labels. Experiments show that the performance of the graph convolutional neural network model is better than the perfor-mances of the combination of the BERT embedding method with clas-sical machine learning models.
翻译:本文介绍了将 BERT 嵌入法与图形进化神经网络相结合的新方式。 这种组合用于解决文本分类问题。 最初, 我们将 BERT 嵌入法应用于文本( 在 BBC 新闻数据集和 IMDB 电影审查数据集中), 以便将所有文本转换为数字矢量。 然后, 图形进化神经网络将应用到这些数字矢量, 将这些文本分类为它们各自拥有的分类/ 标签。 实验显示, 图形进化神经网络模型的性能比 BERT 嵌入法与光学机器学习模型相结合的透视效果要好。