The goal of Domain Generation Algorithm (DGA) detection is to recognize infections with bot malware and is often done with help of Machine Learning approaches that classify non-resolving Domain Name System (DNS) traffic and are trained on possibly sensitive data. In parallel, the rise of privacy research in the Machine Learning world leads to privacy-preserving measures that are tightly coupled with a deep learning model's architecture or training routine, while non deep learning approaches are commonly better suited for the application of privacy-enhancing methods outside the actual classification module. In this work, we aim to measure the privacy capability of the feature extractor of feature-based DGA detector FANCI (Feature-based Automated Nxdomain Classification and Intelligence). Our goal is to assess whether a data-rich adversary can learn an inverse mapping of FANCI's feature extractor and thereby reconstruct domain names from feature vectors. Attack success would pose a privacy threat to sharing FANCI's feature representation, while the opposite would enable this representation to be shared without privacy concerns. Using three real-world data sets, we train a recurrent Machine Learning model on the reconstruction task. Our approaches result in poor reconstruction performance and we attempt to back our findings with a mathematical review of the feature extraction process. We thus reckon that sharing FANCI's feature representation does not constitute a considerable privacy leakage.


翻译:在这项工作中,我们的目标是衡量基于地貌特征的DGA探测器(基于功能的自动Nxdomain分类和智能)的特征提取器的隐私能力。 我们的目标是评估一个数据丰富的对手能否从对科特迪瓦国民军特征提取器进行反向绘图中学习,从而将域名从地貌矢量中重建出来。 攻击成功会对共享科特迪瓦国民军的特征代表性造成隐私威胁,而与此相反的则是使这一代表性得以在没有隐私关切的情况下共享。我们利用三个真实世界数据集,就重建任务对一个经常性机器学习模型进行了培训。我们用一个数学特征来评估,从而形成了一个数学特征的复苏。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
4+阅读 · 2018年3月19日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
Top
微信扫码咨询专知VIP会员