Deep learning (DL) stereo matching methods gained great attention in remote sensing satellite datasets. However, most of these existing studies conclude assessments based only on a few/single stereo images lacking a systematic evaluation on how robust DL methods are on satellite stereo images with varying radiometric and geometric configurations. This paper provides an evaluation of four DL stereo matching methods through hundreds of multi-date multi-site satellite stereo pairs with varying geometric configurations, against the traditional well-practiced Census-SGM (Semi-global matching), to comprehensively understand their accuracy, robustness, generalization capabilities, and their practical potential. The DL methods include a learning-based cost metric through convolutional neural networks (MC-CNN) followed by SGM, and three end-to-end (E2E) learning models using Geometry and Context Network (GCNet), Pyramid Stereo Matching Network (PSMNet), and LEAStereo. Our experiments show that E2E algorithms can achieve upper limits of geometric accuracies, while may not generalize well for unseen data. The learning-based cost metric and Census-SGM are rather robust and can consistently achieve acceptable results. All DL algorithms are robust to geometric configurations of stereo pairs and are less sensitive in comparison to the Census-SGM, while learning-based cost metrics can generalize on satellite images when trained on different datasets (airborne or ground-view).


翻译:深入学习(DL)立体比对方法在遥感卫星数据集中引起了极大注意,然而,大多数现有研究仅以少数/单立体图像为基础进行了评估,没有系统地评价在卫星立体图像上,具有不同辐射度和几何配置的卫星立体图像上如何使用稳健的DL方法;本文通过数百个多日期多站多站卫星立立立体配对,配有不同几何配置的多站立立体配对,对照传统的良好实践的人口普查-SGM(Semi-GM(Semi-GM)(全球匹配),全面理解其准确性、稳健性、概括性能力及其实际潜力。DL方法包括:通过SGM(MC-CNN)等同级神经神经网络(MC-CNN)进行基于学习的衡量成本衡量,以及三个端对端至端(E2E)学习模型,使用地貌和深层次的人口普查网络(Pyrammical-CRational-CVAL),在可接受的地面配置中,所有学习成本和测算法都比得更稳健的,在可接受的GMRML-CS-CS-CS-CL-CRM-CRisal-Cal-CL-CL-CL-CM-C-CM-CM-CM-C-C-CM-CM-CM-C-C-C-CM-C-CAS-CM-C-C-CAS-C-C-C-C-C-C-C-C-C-C-C-CF-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-CF-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-CF-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月8日
Transformers in Remote Sensing: A Survey
Arxiv
25+阅读 · 2022年9月2日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员