In this paper we discretize the incompressible Navier-Stokes equations in the framework of finite element exterior calculus. We make use of the Lamb identity to rewrite the equations into a vorticity-velocity-pressure form which fits into the de Rham complex of minimal regularity. We propose a discretization on a large class of finite elements, including arbitrary order polynomial spaces readily available in many libraries. The main advantage of this discretization is that the divergence of the fluid velocity is pointwise zero at the discrete level. This exactness ensures pressure robustness. We focus the analysis on a class of linearized equations for which we prove well-posedness and provide a priori error estimates. The results are validated with numerical simulations.
翻译:在本文中,我们将不可压缩的导航-斯托克斯方程式分解为外部微积分。 我们使用 Lamb 特性将方程式改写成符合最低常规度的德兰姆综合体的单数速度压力表。 我们建议对一大批有限要素进行分解, 包括许多图书馆可以随时提供的任意命令的多元空间。 这种分解的主要优点是,流体速度的偏差在离散水平上是点零。 这种精确性确保了压力的稳健性。 我们把分析重点放在一类线性方程式上, 我们证明这些方程式的正确性, 并提供先验误差估计。 结果通过数字模拟验证 。