Safety concerns during the operation of legged robots must be addressed to enable their widespread use. Machine learning-based control methods that use model-based constraints provide promising means to improve robot safety. This study presents a modular safety filter to improve the safety of a legged robot, i.e., reduce the chance of a fall. The prerequisite is the availability of a robot that is capable of locomotion, i.e., a nominal controller exists. During locomotion, terrain properties around the robot are estimated through machine learning which uses a minimal set of proprioceptive signals. A novel deep-learning model utilizing an efficient transformer architecture is used for the terrain estimation. A quadratic program combines the terrain estimations with inverse dynamics and a novel exponential control barrier function constraint to filter and certify nominal control signals. The result is an optimal controller that acts as a filter. The filtered control signal allows safe locomotion of the robot. The resulting approach is generalizable, and could be transferred with low effort to any other legged system.
翻译:使用基于模型的限制的基于学习的机械控制方法为改进机器人的安全提供了很有希望的手段。本研究提供了一个模块化的安全过滤器,以提高一个腿式机器人的安全性,即减少坠落的可能性。前提条件是拥有一个能够移动的机器人,即名义控制器存在。在移动过程中,机器人周围的地形特性是通过机器学习来估计的,机器学习使用一套最低限度的自行感知信号。在地形估计中使用了一种利用高效变压器结构的新型深学习模型。一个四方形程序将地形估计与反动和新的指数控制障碍功能结合,以过滤和认证名义控制信号。其结果是最佳控制器作为过滤器发挥作用。过滤器控制信号允许机器人安全移动。由此产生的方法是通用的,可以低努力地转移到任何其他断层系统。</s>