We consider the stochastic optimization problem with smooth but not necessarily convex objectives in the heavy-tailed noise regime, where the stochastic gradient's noise is assumed to have bounded $p$th moment ($p\in(1,2]$). Zhang et al. (2020) is the first to prove the $\Omega(T^{\frac{1-p}{3p-2}})$ lower bound for convergence (in expectation) and provides a simple clipping algorithm that matches this optimal rate. Cutkosky and Mehta (2021) proposes another algorithm, which is shown to achieve the nearly optimal high-probability convergence guarantee $O(\log(T/\delta)T^{\frac{1-p}{3p-2}})$, where $\delta$ is the probability of failure. However, this desirable guarantee is only established under the additional assumption that the stochastic gradient itself is bounded in $p$th moment, which fails to hold even for quadratic objectives and centered Gaussian noise. In this work, we first improve the analysis of the algorithm in Cutkosky and Mehta (2021) to obtain the same nearly optimal high-probability convergence rate $O(\log(T/\delta)T^{\frac{1-p}{3p-2}})$, without the above-mentioned restrictive assumption. Next, and curiously, we show that one can achieve a faster rate than that dictated by the lower bound $\Omega(T^{\frac{1-p}{3p-2}})$ with only a tiny bit of structure, i.e., when the objective function $F(x)$ is assumed to be in the form of $\mathbb{E}_{\Xi\sim\mathcal{D}}[f(x,\Xi)]$, arguably the most widely applicable class of stochastic optimization problems. For this class of problems, we propose the first variance-reduced accelerated algorithm and establish that it guarantees a high-probability convergence rate of $O(\log(T/\delta)T^{\frac{1-p}{2p-1}})$ under a mild condition, which is faster than $\Omega(T^{\frac{1-p}{3p-2}})$. Notably, even when specialized to the finite-variance case, our result yields the (near-)optimal high-probability rate $O(\log(T/\delta)T^{-1/3})$.


翻译:我们以平滑( 平滑) { 平滑( 平滑) 但不一定是共解目标的优化优化优化问题 {( 平滑) {( 平滑) { 平滑( 平滑)( 平滑) { 平滑( 平滑) { 平滑( 平滑)( 平滑)( 平滑)( 平滑)( 2021) 提出另一种算法, 以达到近乎最佳的高概率趋同( 平滑( T/ delta) 的噪音假设 $( p\ ( 1, 2, 2美元) 。 张张相平滑( 1 - p) 平滑( 平滑) 平滑( 平滑( 平滑) 平滑( 平滑) 平滑( 平滑( 2021) 提出另一种算法。 在这项工作中, 我们首先改进了对 平滑( 平滑) 平滑( 平滑) 平滑( 平滑) 平滑( 平滑) 平滑( 平滑) 平滑( 平滑) 平滑) 平滑( 平滑) 平滑( 平滑( 平滑) ( 平滑) ( 平滑) 平滑) 平滑( 平滑) 平滑( 平滑) ( 平滑) ( 平滑) ( 平滑) ( 平滑) ( 的 的 平滑) ( 平滑) ( 平滑) ( 平滑) ( 的 平滑) ( 平滑) ( 平滑) ( 平滑) ( 平滑) ( 平滑) ( 平滑) ( 平滑) ( 平滑) ( 平滑) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 的 平滑) ( 平滑) ( ) ( 平滑) ( 平滑) ( 平滑) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 平滑) ( 平滑) ( 平

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月3日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员