For a graph $G$, a $D$-diameter-reducing exact hopset is a small set of additional edges $H$ that, when added to $G$, maintains its graph metric but guarantees that all node pairs have a shortest path in $G \cup H$ using at most $D$ edges. A shortcut set is the analogous concept for reachability. These objects have been studied since the early '90s due to applications in parallel, distributed, dynamic, and streaming graph algorithms. For most of their history, the state-of-the-art construction for either object was a simple folklore algorithm, based on randomly sampling nodes to hit long paths in the graph. However, recent breakthroughs of Kogan and Parter [SODA '22] and Bernstein and Wein [SODA '23] have finally improved over the folklore diameter bound of $\widetilde{O}(n^{1/2})$ for shortcut sets and for $(1+\epsilon)$-approximate hopsets. For both objects it is now known that one can use $O(n)$ hop-edges to reduce diameter to $\widetilde{O}(n^{1/3})$. The only setting where folklore sampling remains unimproved is for exact hopsets. Can these improvements be continued? We settle this question negatively by constructing graphs on which any exact hopset of $O(n)$ edges has diameter $\widetilde{\Omega}(n^{1/2})$. This improves on the previous lower bound of $\widetilde{\Omega}(n^{1/3})$ by Kogan and Parter [FOCS '22]. Using similar ideas, we also polynomially improve the current lower bounds for shortcut sets, constructing graphs on which any shortcut set of $O(n)$ edges reduces diameter to $\widetilde{\Omega}(n^{1/4})$. This improves on the previous lower bound of $\Omega(n^{1/6})$ by Huang and Pettie [SIAM J. Disc. Math. '18]. We also extend our constructions to provide lower bounds against $O(p)$-size exact hopsets and shortcut sets for other values of $p$; in particular, we show that folklore sampling is near-optimal for exact hopsets in the entire range of $p \in [1, n^2]$.


翻译:对于一个图$G$,$D$-直径缩减的精确Hopset是一个小的附加边集合$H$,当添加到$G$中时,保持其图度量,但保证$G\cup H$中的所有节点对都有一条最短路径,最多使用$D$个边。快捷方式是可及性的类似概念。由于并行、分布式、动态和流图算法的应用,这些对象自90年代初以来一直受到研究。对于这些对象的大部分历史,状态-of-the-art的构建都是一个简单的民间算法,基于随机抽样节点以打击长路径。然而,科甘和帕特 [SODA '22]以及伯恩斯坦和温 [SODA '23]的最新突破,最终改善了快捷方式集合和$(1+\epsilon)$-近似Hopset的民间直径界为$\widetilde {O} (n^{1/2})$。现在已知,可以使用$O(n)$ hop-edges将直径减少到$\widetilde {O}(n^{1/3})$。民间直径较低的唯一设置是精确的Hopsets。这些改进能否继续?我们通过构造图表来负面回答这个问题,在任何$O(n)$边缘的精确Hopset中,图的直径都为$\widetilde{\Omega}(n^{1/2})$。这比Kogan和Parter [FOCS '22]的先前下界$\widetilde{\Omega}(n^{1/3})$有所改进。使用类似的思路,我们还多项式改进了快捷方式集的当前下界,构造了这样的图,其中任何$O(n)$边都会将直径减小到$\widetilde{\Omega}(n^{1/4})$。这比黄和Pettie [SIAM J. Disc. Math. '18]的先前下界$\Omega(n^{1/6})$有所改进。我们还扩展了我们的构造,为其他$p$值的$O(p)$大小的精确Hopsets和快捷集提供了下界;特别地,我们展示了民间取样在整个$p \in [1, n^2]$范围内对精确的Hopsets都是接近最优的。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
GitHub 热门:别再用 print 输出来调试代码了
Python开发者
27+阅读 · 2019年4月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月22日
VIP会员
相关VIP内容
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
GitHub 热门:别再用 print 输出来调试代码了
Python开发者
27+阅读 · 2019年4月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员