The article is devoted to the problem of calculating the probability density of a strictly stable law at $x\to\infty$. To solve this problem, it was proposed to use the expansion of the probability density in a power series. A representation of the probability density in the form of a power series and an estimate for the remainder term was obtained. This power series is convergent in the case $0<\alpha<1$ and asymptotic at $x\to\infty$ in the case $1<\alpha<2$. The case $\alpha=1$ was considered separately. It was shown that in the case $\alpha=1$ the obtained power series was convergent for any $|x|>1$ at $N\to\infty$. It was also shown that in this case it was convergent to the density of $g(x,1,\theta)$. An estimate of the threshold coordinate $x_\varepsilon^N$, was obtained which determines the range of applicability of the resulting expansion of the probability density in a power series. It was shown that in the domain $|x|\geqslant x_\varepsilon^N$ this power series could be used to calculate the probability density.


翻译:文章专门用$x\ to\ infty$来计算严格稳定的法律的概率密度问题。 为了解决这个问题, 提议在电力序列中使用扩大概率密度的方法。 获得了以电序列形式表示的概率密度表示, 剩余时间的估计值。 这个电源序列在案件 $0 alpha < 1 $ 和 asymptaty $x\to\ inty$ $$ ALpha < 2$ 中是趋同的。 案例 $\ alpha=1$ =1$ 。 为了解决这个问题, 有人提议, 在案件 $\ alpha=1 中, 获得的电量序列以 $x% 1$ 和 剩余时间的估计值表示。 在此案中, 该电源序列与 $( x, 1,\ thethetta) 的密度一致。 获得了一个阈值坐标坐标坐标坐标 $xvarepepslon@n 。 它显示, 在域中, 将使用概率 $_xxxxqlangsalges 。</s>

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月25日
Arxiv
13+阅读 · 2022年4月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员