Spinal codes is a new family of capacity-achieving rateless codes that has been shown to achieve better rate performance compared to Raptor codes, Strider codes, and rateless Low-Density Parity-Check (LDPC) codes. This correspondence addresses the performance limitations of Spinal codes in the finite block length regime, uncovering an error floor phenomenon at high Signal-to-Noise Ratios (SNRs). We develop an analytical expression to approximate the error floor and devise SNR thresholds at which the error floor initiates. Numerical results across {Additive White Gaussian Noise (AWGN), rayleigh, and nakagami-m fading channels} verify the accuracy of our analysis. The analysis and numerical results also show that transmitting more passes of symbols can lower the error floor but does not affect the SNR threshold, providing insights on the performance target, the working SNR region, and the code design.
翻译:暂无翻译