Existing Deep-Learning-based (DL-based) Unsupervised Salient Object Detection (USOD) methods learn saliency information in images based on the prior knowledge of traditional saliency methods and pretrained deep networks. However, these methods employ a simple learning strategy to train deep networks and therefore cannot properly incorporate the "hidden" information of the training samples into the learning process. Moreover, appearance information, which is crucial for segmenting objects, is only used as post-process after the network training process. To address these two issues, we propose a novel appearance-guided attentive self-paced learning framework for unsupervised salient object detection. The proposed framework integrates both self-paced learning (SPL) and appearance guidance into a unified learning framework. Specifically, for the first issue, we propose an Attentive Self-Paced Learning (ASPL) paradigm that organizes the training samples in a meaningful order to excavate gradually more detailed saliency information. Our ASPL facilitates our framework capable of automatically producing soft attention weights that measure the learning difficulty of training samples in a purely self-learning way. For the second issue, we propose an Appearance Guidance Module (AGM), which formulates the local appearance contrast of each pixel as the probability of saliency boundary and finds the potential boundary of the target objects by maximizing the probability. Furthermore, we further extend our framework to other multi-modality SOD tasks by aggregating the appearance vectors of other modality data, such as depth map, thermal image or optical flow. Extensive experiments on RGB, RGB-D, RGB-T and video SOD benchmarks prove that our framework achieves state-of-the-art performance against existing USOD methods and is comparable to the latest supervised SOD methods.


翻译:现有基于深层学习的(基于DL的)无监督光学天体探测(USOD)方法在以前对传统显要方法和先入为主的深层网络的知识基础上,在图像中学习突出信息,然而,这些方法采用简单的学习战略来培训深层网络,因此无法适当地将培训样本中的“隐藏”信息纳入学习过程。此外,对分割对象至关重要的外观信息仅用作网络培训过程之后的后进程。为了解决这两个问题,我们提议为未受监督的显要对象探测建立一个新的外观引导的自律自律自律学习框架(USOD),拟议的框架将自我节奏学习(SPL)和外观指导纳入统一的学习框架。具体地说,我们提出“强化自动学习”信息模式,以有意义的方式组织培训样本,以便逐渐地挖掘更详细的突出的信息。我们的框架能够自动产生软度的注意度,用纯粹自导的显眼物体探测方式测量培训样本的难度。此外,我们提出的“BLOD”的流值基准是作为我们最新的比值的比值,我们目前更深层次的比值框架。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月2日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员