Accurate estimates of subnational health and demographic indicators are critical for informing health policy decisions. Many countries collect relevant data using complex household surveys, but when data are limited, direct survey weighted estimates of small area proportions may be unreliable. Area level models treating these direct estimates as response data can improve precision but often require known sampling variances of the direct estimators for all areas. In practice, the sampling variances are typically estimated, so standard approaches do not account for a key source of uncertainty. In order to account for variability in the estimated sampling variances, we propose a hierarchical Bayesian spatial area level model that smooths both the estimated means and sampling variances to produce point and interval estimates of small area proportions. Our model explicitly targets estimation of small area proportions rather than means of continuous variables and we consider examples of both moderate and low prevalence events. We demonstrate the performance of our approach via simulation and application to vaccination coverage and HIV prevalence data from the Demographic and Health Surveys.
翻译:许多国家利用复杂的住户调查收集相关数据,但当数据有限时,直接调查对小面积比例的加权估计数可能不可靠; 将直接估计数作为答复数据的地区一级模型可以提高精确度,但往往要求直接估计者对所有地区进行已知的抽样差异; 实际上,抽样差异一般是估计的,因此标准办法没有考虑到关键的不确定性来源; 为了计算估计抽样差异的变异性,我们提议采用一个巴耶西亚空间区级等级模型,使估计的手段和抽样差异均平稳,以得出小面积比例的点数和间间数估计数; 我们的模式明确针对小面积比例的估计数,而不是连续变量,我们考虑中度和低度流行事件的实例; 我们通过模拟和应用疫苗接种覆盖面和人口与健康调查的艾滋病毒流行率数据,展示我们的做法的绩效。