There are six, well-structured hand gestures for washing hands as provided by World Health Organisation guidelines. In this paper, hand features such as contours of the hands, the centroid of the hands, and extreme hand points along the largest contour are extracted for specific hand-washing gestures with the use of a computer vision library, OpenCV. For this project, a robust dataset of hand hygiene video recordings is built with the help of 30 research participants. In this work, a subset of the dataset was used as a pilot study to demonstrate the effectiveness of the KNN algorithm. Extracted hand features saved in a CSV file are passed to a KNN model with a cross-fold validation technique for the classification and prediction of the unlabelled data. A mean accuracy score of >95% is achieved and proves that the KNN algorithm with an appropriate input value of K=3 is efficient for hand hygiene gestures classification.
翻译:根据世界卫生组织准则的规定,洗手手手有6个井然有序的手势。在本文中,使用计算机视觉图书馆OpenCV,在使用计算机视觉资料库OpenCV进行具体的洗手手手手手势时,会提取手势特征,如手的轮廓、手的中间体和最大的轮廓上的极端手点。对于这个项目,在30名研究参与者的帮助下,将手卫生录像的可靠数据集建成。在这项工作中,将数据集中的一组数据用作示范KNN算法有效性的试点研究。在CSV文档中保存的抽取手功能被传递给KNNM模型,该模型具有对未贴标签数据进行分类和预测的交叉验证技术。达到了 >95%的平均精度分数,并证明具有适当输入值K=3的KNN算法对于手卫生手势手势的分类是有效的。