Decoupling representation learning and classifier learning has been shown to be effective in classification with long-tailed data. There are two main ingredients in constructing a decoupled learning scheme; 1) how to train the feature extractor for representation learning so that it provides generalizable representations and 2) how to re-train the classifier that constructs proper decision boundaries by handling class imbalances in long-tailed data. In this work, we first apply Stochastic Weight Averaging (SWA), an optimization technique for improving the generalization of deep neural networks, to obtain better generalizing feature extractors for long-tailed classification. We then propose a novel classifier re-training algorithm based on stochastic representation obtained from the SWA-Gaussian, a Gaussian perturbed SWA, and a self-distillation strategy that can harness the diverse stochastic representations based on uncertainty estimates to build more robust classifiers. Extensive experiments on CIFAR10/100-LT, ImageNet-LT, and iNaturalist-2018 benchmarks show that our proposed method improves upon previous methods both in terms of prediction accuracy and uncertainty estimation.
翻译:随机表示的长尾分类解耦训练
解耦表示学习和分类器学习在长尾数据分类中被证明是有效的。构建解耦学习方案有两个主要因素:1)如何训练特征提取器以进行表示学习,使其提供可推广的表示;2)如何通过处理长尾数据中的类别不平衡来重新训练构建适当决策边界的分类器。在本研究中,我们首先应用用于改善深度神经网络泛化的优化技术随机加权平均(SWA)来获得用于长尾分类的更好的泛化特征提取器。然后,我们提出一种基于SWA-Gaussian(一种高斯扰动的SWA)和自蒸馏策略的新型分类器重新训练算法,该算法可以利用基于不确定性估计的多样随机表示来构建更健壮的分类器。在CIFAR10/100-LT,ImageNet-LT和iNaturalist-2018基准测试上的广泛实验表明,我们提出的方法在预测准确性和不确定性估计方面都优于先前的方法。