Modern, torque-controlled service robots can regulate contact forces when interacting with their environment. Model Predictive Control (MPC) is a powerful method to solve the underlying control problem, allowing to plan for whole-body motions while including different constraints imposed by the robot dynamics or its environment. However, an accurate model of the robot-environment is needed to achieve a satisfying closed-loop performance. Currently, this necessity undermines the performance and generality of MPC in manipulation tasks. In this work, we combine an MPC-based whole-body controller with two adaptive schemes, derived from online system identification and adaptive control. As a result, we enable a general mobile manipulator to interact with unknown environments, without any need for re-tuning parameters or pre-modeling the interacting objects. In combination with the MPC controller, the two adaptive approaches are validated and benchmarked with a ball-balancing manipulator in door opening and object lifting tasks.
翻译:现代的、 透镜控制的服务机器人可以在与其环境互动时调节接触力量。 模型预测控制(MPC) 是解决基本控制问题的有力方法, 允许计划全体运动, 包括机器人动态或环境造成的不同限制。 但是, 实现令人满意的闭环性能需要机器人环境的精确模型。 目前, 这种必要性破坏了MPC在操作任务中的性能和一般性。 在这项工作中, 我们将基于 MPC 的全机控制器与两个适应性方案结合起来, 其来源是在线系统识别和适应性控制。 因此, 我们使得一个通用移动操纵器能够与未知的环境互动, 不需要调整参数或预先建模互动对象。 与 MPC 控制器一起, 两种适应性方法在打开和提升对象任务中与一个球平衡的操控器一起被验证和基准。