Omni-directional mobile robot (OMR) systems have been very popular in academia and industry for their superb maneuverability and flexibility. Yet their potential has not been fully exploited, where the extra degree of freedom in OMR can potentially enable the robot to carry out extra tasks. For instance, gimbals or sensors on robots may suffer from a limited field of view or be constrained by the inherent mechanical design, which will require the chassis to be orientation-aware and respond in time. To solve this problem and further develop the OMR systems, in this paper, we categorize the tasks related to OMR chassis into orientation transition tasks and position transition tasks, where the two tasks can be carried out at the same time. By integrating the parallel task goals in a single planning problem, we proposed an orientation-aware planning architecture for OMR systems to execute the orientation transition and position transition in a unified and efficient way. A modified trajectory optimization method called orientation-aware timed-elastic-band (OATEB) is introduced to generate the trajectory that satisfies the requirements of both tasks. Experiments in both 2D simulated environments and real scenes are carried out. A four-wheeled OMR is deployed to conduct the real scene experiment and the results demonstrate that the proposed method is capable of simultaneously executing parallel tasks and is applicable to real-life scenarios.


翻译:整个方向移动机器人(OMR)系统在学术界和行业非常受欢迎,因为它们具有超强的可操作性和灵活性。然而,它们的潜力尚未得到充分开发,因为OMR的超自由程度可能使机器人能够执行额外的任务。例如,机器人上的Gimbals或传感器可能受到有限的视野领域,或受到固有的机械设计的限制,这就要求底盘具有定向意识并及时作出反应。为了解决这个问题并进一步开发OMR系统,我们在本文件中将与OMR有关的任务归类为定向过渡任务和职位过渡任务,可以同时执行这两项任务。通过将平行任务目标纳入一个单一的规划问题,我们提议为OMR系统制定一个定向规划架构,以便以统一和有效的方式执行方向过渡和定位过渡。我们引入了一种叫做定向意识定时弹性带(OATEB)的修改轨迹优化方法,以生成满足两项任务要求的轨迹。在2D模拟环境进行实验,同时进行两项任务,同时进行两个任务。通过将平行任务目标纳入一个单一的规划问题,我们提议为OMR系统提出一个方向规划结构,并同时进行实际操作。一个模拟任务和模拟场景环境的模拟,以演示结果。

0
下载
关闭预览

相关内容

机器人(英语:Robot)包括一切模拟人类行为或思想与模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,机器人指能自动运行任务的人造机器设备,用以取代或协助人类工作,一般会是机电设备,由计算机程序或是电子电路控制。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
37+阅读 · 2021年4月27日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年9月29日
Arxiv
5+阅读 · 2021年2月8日
Arxiv
6+阅读 · 2018年4月3日
VIP会员
相关VIP内容
专知会员服务
37+阅读 · 2021年4月27日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员