Topic classification systems on spoken documents usually consist of two modules: an automatic speech recognition (ASR) module to convert speech into text and a text topic classification (TTC) module to predict the topic class from the decoded text. In this paper, instead of using the ASR transcripts, the fusion of deep acoustic and linguistic features is used for topic classification on spoken documents. More specifically, a conventional CTC-based acoustic model (AM) using phonemes as output units is first trained, and the outputs of the layer before the linear phoneme classifier in the trained AM are used as the deep acoustic features of spoken documents. Furthermore, these deep acoustic features are fed to a phoneme-to-word (P2W) module to obtain deep linguistic features. Finally, a local multi-head attention module is proposed to fuse these two types of deep features for topic classification. Experiments conducted on a subset selected from Switchboard corpus show that our proposed framework outperforms the conventional ASR+TTC systems and achieves a 3.13% improvement in ACC.
翻译:口述文件的专题分类系统通常由两个模块组成:将语音转换成文字的自动语音识别模块(ASR)和从解码文本中预测主题类的文本专题分类模块(TTC),在本文中,不是使用ASR记录誊本,而是在口述文件的专题分类中使用深声学和语言特征的结合。更具体地说,使用电话作为产出单位的传统CTC声学模型(AM)首先经过培训,在经过培训的AM线性电话分类器之前的层产出被用作口述文件的深音特征。此外,这些深声学特征被输入一个电话对字模块,以获取深语言特征。最后,建议采用一个本地多点注意模块,将这两种深层特征结合到专题分类中。在切换板上选定的一个子上进行的实验显示,我们提议的框架比常规的ASR+TTC系统高出3.13%,并在ACC中实现了3.13%的改进。