Federeated Learning (FL) offers a privacy-preserving solution for Semantic Segmentation (SS) tasks to adapt to new domains, but faces significant challenges from these domain shifts, particularly when client data is unlabeled. However, most existing FL methods unrealistically assume access to labeled data on remote clients or fail to leverage the power of modern Vision Foundation Models (VFMs). Here, we propose a novel and challenging task, FFREEDG, in which a model is pretrained on a server's labeled source dataset and subsequently trained across clients using only their unlabeled data, without ever re-accessing the source. To solve FFREEDG, we propose FRIEREN, a framework that leverages the knowledge of a VFM by integrating vision and language modalities. Our approach employs a Vision-Language decoder guided by CLIP-based text embeddings to improve semantic disambiguation and uses a weak-to-strong consistency learning strategy for robust local training on pseudo-labels. Our experiments on synthetic-to-real and clear-to-adverse-weather benchmarks demonstrate that our framework effectively tackles this new task, achieving competitive performance against established domain generalization and adaptation methods and setting a strong baseline for future research.
翻译:暂无翻译