Traditional self-attention mechanisms in convolutional networks tend to use only the output of the previous layer as input to the attention network, such as SENet, CBAM, etc. In this paper, we propose a new attention modification method that tries to get the output of the classification network in advance and use it as a part of the input of the attention network. We used the auxiliary classifier proposed in GoogLeNet to obtain the results in advance and pass them into attention networks. we added this mechanism to SE-ResNet for our experiments and achieved a classification accuracy improvement of at most 1.94% on cifar100.


翻译:在本文中,我们提出了一种新的关注修改方法,试图事先获得分类网络的产出,并将其作为关注网络的一部分投入使用。我们使用GoogLeNet中提议的辅助分类器事先获取结果并将其传送到关注网络。我们把这一机制添加到SE-ResNet,用于我们的实验,并在cifar100上实现了最高1.94%的分类精确度改进。

0
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
专知会员服务
15+阅读 · 2021年9月15日
Transformer模型-深度学习自然语言处理,17页ppt
专知会员服务
102+阅读 · 2020年8月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Self-Attention GAN 中的 self-attention 机制
PaperWeekly
12+阅读 · 2019年3月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【干货】基于Keras的注意力机制实战
专知
59+阅读 · 2018年5月4日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
0+阅读 · 2021年12月7日
Arxiv
11+阅读 · 2021年10月26日
Arxiv
5+阅读 · 2020年3月16日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
6+阅读 · 2019年4月8日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
13+阅读 · 2017年12月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Self-Attention GAN 中的 self-attention 机制
PaperWeekly
12+阅读 · 2019年3月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【干货】基于Keras的注意力机制实战
专知
59+阅读 · 2018年5月4日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关论文
Arxiv
0+阅读 · 2021年12月7日
Arxiv
11+阅读 · 2021年10月26日
Arxiv
5+阅读 · 2020年3月16日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
6+阅读 · 2019年4月8日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
13+阅读 · 2017年12月5日
Top
微信扫码咨询专知VIP会员