Artificial Neuronal Networks are models widely used for many scientific tasks. One of the well-known field of application is the approximation of high-dimensional problems via Deep Learning. In the present paper we investigate the Deep Learning techniques applied to Shape Functionals, and we start from the so--called Torsional Rigidity. Our aim is to feed the Neuronal Network with digital approximations of the planar domains where the Torsion problem (a partial differential equation problem) is defined, and look for a prediction of the value of Torsion. Dealing with images, our choice fell on Convolutional Neural Network (CNN), and we train such a network using reference solutions obtained via Finite Element Method. Then, we tested the network against some well-known properties involving the Torsion as well as an old standing conjecture. In all cases, good approximation properties and accuracies occurred.
翻译:人工中枢网络是许多科学任务广泛使用的模型。 众所周知的应用领域之一是通过深层学习近似高维问题。 在本文件中,我们调查了用于形状功能的深层学习技术,我们从所谓的托拉尔硬度开始。 我们的目标是向神经网络提供图层域的数字近似值,其中界定了托拉尔问题(局部差异方程式问题),并寻找托拉尔价值的预测。 处理图像时,我们的选择落到Convolution Neural网络(CNN)上,我们利用通过极致元素法获得的参考解决方案来培训这样一个网络。 然后,我们用一些众所周知的、涉及托拉尔松的特性以及一个古老的常态猜想来测试网络。 在所有这些情况下,都出现了良好的近似特性和适应性。