Many recent practical and theoretical breakthroughs focus on adversarial team multi-player games (ATMGs) in ex ante correlation scenarios. In this setting, team members are allowed to coordinate their strategies only before the game starts. Although there existing algorithms for solving extensive-form ATMGs, the size of the game tree generated by the previous algorithms grows exponentially with the number of players. Therefore, how to deal with large-scale zero-sum extensive-form ATMGs problems close to the real world is still a significant challenge. In this paper, we propose a generic multi-player transformation algorithm, which can transform any multi-player game tree satisfying the definition of AMTGs into a 2-player game tree, such that finding a team-maxmin equilibrium with correlation (TMECor) in large-scale ATMGs can be transformed into solving NE in 2-player games. To achieve this goal, we first introduce a new structure named private information pre-branch, which consists of a temporary chance node and coordinator nodes and aims to make decisions for all potential private information on behalf of the team members. We also show theoretically that NE in the transformed 2-player game is equivalent TMECor in the original multi-player game. This work significantly reduces the growth of action space and nodes from exponential to constant level. This enables our work to outperform all the previous state-of-the-art algorithms in finding a TMECor, with 182.89, 168.47, 694.44, and 233.98 significant improvements in the different Kuhn Poker and Leduc Poker cases (21K3, 21K4, 21K6 and 21L33). In addition, this work first practically solves the ATMGs in a 5-player case which cannot be conducted by existing algorithms.
翻译:暂无翻译