We develop a lowest-order nonconforming virtual element method for planar linear elasticity, which can be viewed as an extension of the idea in Falk (1991) to the virtual element method (VEM), with the family of polygonal meshes satisfying a very general geometric assumption. The method is shown to be uniformly convergent for the nearly incompressible case with optimal rates of convergence. The crucial step is to establish the discrete Korn's inequality, yielding the coercivity of the discrete bilinear form. We also provide a unified locking-free scheme both for the conforming and nonconforming VEMs in the lowest order case. Numerical results validate the feasibility and effectiveness of the proposed numerical algorithms.
翻译:我们为平面线性弹性开发了一个最低顺序不兼容的虚拟元素方法,这可被视为Falk(1991年)中的概念向虚拟元素法(VEM)的延伸,多边形模头组符合非常一般的几何假设。该方法显示,对于几乎无法压缩和最佳趋同率的几乎无法压缩的情况,该方法一致。关键步骤是确定离散的Korn的不平等,使离散的双线形式具有共性。我们还为最低顺序情况下的符合性和不兼容性VEMs提供了一个统一的无锁方案。数字结果验证了拟议数字算法的可行性和有效性。