Deep multi-task methods, where several tasks are learned within a single network, have recently attracted increasing attention. Burning point of this attention is their capacity to capture inter-task relationships. Current approaches either only rely on weight sharing, or add explicit dependency modelling by decomposing the task joint distribution using Bayes chain rule. If the latter strategy yields comprehensive inter-task relationships modelling, it requires imposing an arbitrary order into an unordered task set. Most importantly, this sequence ordering choice has been identified as a critical source of performance variations. In this paper, we present Multi-Order Network (MONET), a multi-task learning method with joint task order optimization. MONET uses a differentiable order selection based on soft order modelling inside Birkhoff's polytope to jointly learn task-wise recurrent modules with their optimal chaining order. Furthermore, we introduce warm up and order dropout to enhance order selection by encouraging order exploration. Experimentally, we first validate MONET capacity to retrieve the optimal order in a toy environment. Second, we use an attribute detection scenario to show that MONET outperforms existing multi-task baselines on a wide range of dependency settings. Finally, we demonstrate that MONET significantly extends state-of-the-art performance in Facial Action Unit detection.


翻译:在一个单一网络中学习了多项任务的深层多任务方法最近引起了越来越多的关注。 这种关注的发热点是它们捕捉跨任务关系的能力。 目前的方法要么仅仅依靠权重共享, 要么通过使用 Bayes 链规则拆分任务联合分配, 增加明显的依赖性建模。 如果后一种战略生成了全面的跨任务关系建模, 则需要将任意命令强加给一个没有顺序的任务组。 最重要的是, 这个排序选择被确定为性能变化的关键来源。 在本文中, 我们提出多Order 网络( MONET ), 多任务学习方法, 以及联合任务顺序优化。 MONET 使用基于Birkhoff 的多功能型软命令建模的可不同顺序选择, 来根据它们的最佳连锁顺序共同学习任务性重复模块 。 此外, 我们引入热调和命令退出以通过鼓励订单勘探加强秩序选择。 实验, 我们首先验证了MONET 能力, 以便在一个玩具环境中恢复最佳秩序。 其次, 我们使用一个属性检测假设来显示 MON 超越了当前多任务测算系统在广范围的软度运行状态中 。

0
下载
关闭预览

相关内容

MONET:Mobile Networks & Applications。 Explanation:移动网络与应用。 Publisher:Springer。 SIT:Mobile Networks & Applications
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员