Predicting the locations an individual will visit in the future is crucial for solving many societal issues like disease diffusion and reduction of pollution among many others. The models designed to tackle next-location prediction, however, require a significant amount of individual-level information to be trained effectively. Such data may be scarce or even unavailable in some geographic regions or peculiar scenarios (e.g., cold-start in recommendation systems). Moreover, the design of a next-location predictor able to generalize or geographically transfer knowledge is still an open research challenge. Recent advances in natural language processing have led to a rapid diffusion of Large Language Models (LLMs) which have shown good generalization and reasoning capabilities. These insights, coupled with the recent findings that LLMs are rich in geographical knowledge, allowed us to believe that these models can act as zero-shot next-location predictors. This paper evaluates the capabilities of many popular LLMs in this role, specifically Llama, GPT-3.5 and Mistral 7B. After designing a proper prompt, we tested the models on three real-world mobility datasets. The results show that LLMs can obtain accuracies up to 32.4%, a significant relative improvement of over 600% when compared to sophisticated DL models specifically designed for human mobility. Moreover, we show that other LLMs are unable to perform the task properly. To prevent positively biased results, we also propose a framework inspired by other studies to test data contamination. Finally, we explored the possibility of using LLMs as text-based explainers for next-location prediction showing that can effectively provide an explanation for their decision. Notably, 7B models provide more generic, but still reliable, explanations compared to larger counterparts. Code: github.com/ssai-trento/LLM-zero-shot-NL
翻译:暂无翻译