The efficient modeling for disorder in a phenomena depends on the chosen score and objective functions. The main parameters in modeling are location, scale and shape. The exponential power distribution known as generalized Gaussian is extensively used in modeling. In real world, the observations are member of different parametric models or disorder in a data set exists. In this study, estimating equations for the parameters of exponential power distribution are derived to have robust and also efficient M-estimators when the data set includes disorder or contamination. The robustness property of M-estimators for the parameters is examined. Fisher information matrices based on the derivative of score functions from $\log$, $\log_q$ and distorted log-likelihoods are proposed by use of Tsallis $q$-entropy in order to have variances of M-estimators. It is shown that matrices derived by score functions are positive semidefinite if conditions are satisfied. Information criteria inspired by Akaike and Bayesian are arranged by taking the absolute value of score functions. Fitting performances of score functions from estimating equations and objective functions are tested by applying volume, information criteria and mean absolute error which are essential tools in modeling to assess the fitting competence of the proposed functions. Applications from simulation and real data sets are carried out to compare the performance of estimating equations and objective functions. It is generally observed that the distorted log-likelihood for the estimations of parameters of exponential power distribution has superior performance than other score and objective functions for the contaminated data sets.


翻译:一种现象中的混乱现象的有效模型建模取决于选择的得分和客观功能。 模型的主要参数是位置、 比例和形状。 称为通用高斯的指数性功率分布在模型中被广泛使用。 在现实世界中, 观测是数据组中存在不同参数模型或障碍的一部分。 在本研究中, 指数功率分布参数的估算方程式在数据集包括扰动或污染时是稳健的, 也是高效的M- 测算器。 对参数的M- 估测器的稳健性属性进行了检查。 以 $\log$、 $\log_ q$ 和扭曲的日志相似性等得分函数衍生出来的渔业信息矩阵, 由使用 Tsalllis $qli$- entropy 的指数分布模型或数据组组成。 在符合条件的情况下, 得分数函数的矩阵是积极的半确定值。 Akaikike和Bayesian 以绝对值计算得分数函数, 从估计公式和客观函数的得分数的得分函数, 通过应用精度的精度参数进行测试, 将精度的精确的精确性数据估工具, 和绝对的测测测测算法,, 将精确测测算的比测算工具和绝对性测测测测测算结果, 测测测测测测算中, 测测测算中, 测算中, 测算中, 测算中, 测算中, 测算中测算中, 测算中, 测算中测算中测算中测算中测算中测算中, 测算中测算中测算中测算中测算中测算中测算中测算中, 测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测算中测

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
51+阅读 · 2020年8月16日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月29日
Arxiv
0+阅读 · 2021年3月28日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员