Many frameworks exist to infer cause and effect relations in complex nonlinear systems but a complete theory is lacking. A new framework is presented that is fully nonlinear, provides a complete information theoretic disentanglement of causal processes, allows for nonlinear interactions between causes, identifies the causal strength of missing or unknown processes, and can analyze systems that cannot be represented on standard graphs. The basic building blocks are information theoretic measures such as (conditional) mutual information and a new concept called certainty that monotonically increases with the information available about the target process. The framework is presented in detail and compared with other existing frameworks, and the treatment of confounders is discussed. It is tested on several highly simplified stochastic processes to demonstrate how blocking and gateways are handled, and on the chaotic Lorentz 1963 system. It is shown that the framework provides information on the local dynamics, but also reveals information on the larger scale structure of the underlying attractor. While there are systems with structures that the framework cannot disentangle, it is argued that any causal framework that is based on integrated quantities will miss out potentially important information of the underlying probability density functions.


翻译:在复杂的非线性系统中,有许多框架可以推断因果关系,但缺乏一个完整的理论。一个新的框架是完全非线性的框架,提供了完整的因果过程信息理论脱钩,允许因果之间非线性互动,确定缺失或未知过程的因果强度,并可以分析无法在标准图表上反映的系统。基本构件是信息理论措施,如(有条件的)相互信息,以及一个新的概念,即与目标进程现有信息单质增加的确定性。框架是与其他现有框架进行详细比较的,并讨论对混结者的处理。该框架在几个高度简化的随机程序上进行测试,以显示如何处理阻塞和网关,以及在1963年的混乱的Lorentz系统中进行测试。它表明,框架提供了有关当地动态的信息,但也揭示了基础吸引器更大规模结构的信息。虽然有框架无法分解的结构,但据指出,基于集成数量的任何因果框架都将错过潜在重要的可能性密度功能。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年5月24日
Arxiv
0+阅读 · 2021年5月22日
Arxiv
1+阅读 · 2021年5月20日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员