This work resolves a longstanding open question in automata theory, i.e., the {\it linear-bounded automata question} ({\it LBA question}), which can also be phrased succinctly in the language of computational complexity theory as $DSPACE[n]\overset{?}{=} NSPACE[n]$. We show first that $DSPACE[n]\neq NSPACE[n]$. Then, we show by padding argument that $DSPACE[\log n]\neq NSPACE[\log n]$. Our proof technique is primarily based on diagonalization by a universal nondeterministic $n$ space-bounded Turing machine against all deterministic $n$ space-bounded Turing machines. Our proof also implies the following fundamental consequences: (1) There is no deterministic Turing machine of space complexity $\log n$ deciding the $st$-connectivity question (STCON); (2) $L\neq P$.
翻译:这项工作解决了自动化理论中长期悬而未决的问题, 即 ~ ~ ~ ~ ~ ~ (~ LBA 问 }), 也可以用计算复杂度理论的语言简洁地表述为 $DSPACE[ n]\ overset{? ~ NSPACE[ n] 。 我们首先表明 $DSPACE[ n]\ neq NSPACE[n] $。 然后, 我们通过抛出论点显示 $DSPACE[\log n]\neq NSPACE[\log n]$。 我们的验证技术主要基于一种非定型的无定型的超载空间图灵机的二角化。 我们的证据还意味着以下基本后果:(1) 空间复杂度没有确定型图灵机 $@ log n 。