Many decision problems concerning cellular automata are known to be decidable in the case of algebraic cellular automata, that is, when the state set has an algebraic structure and the automaton acts as a morphism. The most studied cases include finite fields, finite commutative rings and finite commutative groups. In this paper, we provide methods to generalize these results to the broader case of group cellular automata, that is, the case where the state set is a finite (possibly non-commutative) finite group. The configuration space is not even necessarily the full shift but a subshift -- called a group shift -- that is a subgroup of the full shift on Z^d, for any number d of dimensions. We show, in particular, that injectivity, surjectivity, equicontinuity, sensitivity and nilpotency are decidable for group cellular automata, and non-transitivity is semi-decidable. Injectivity always implies surjectivity, and jointly periodic points are dense in the limit set. The Moore direction of the Garden-of-Eden theorem holds for all group cellular automata, while the Myhill direction fails in some cases. The proofs are based on effective projection operations on group shifts that are, in particular, applied on the set of valid space-time diagrams of group cellular automata. This allows one to effectively construct the traces and the limit sets of group cellular automata. A preliminary version of this work was presented at the conference Mathematical Foundations of Computer Science 2020.
翻译:有关细胞自动成像的很多决定问题在代数细胞自动成像组中已知是可以分辨的, 也就是说, 当状态组有一个代数结构, 而自动成像作为变形体时, 也就是当状态组有一个代数结构, 并且自动成形作为变形体时, 研究最多的案例包括有限的字段、 有限的交量环 和有限的混合组。 在本文中, 我们提供一些方法将这些结果概括到集体细胞自动成形的更广泛的案例, 也就是说, 状态组是一个有限( 可能非互换性) 的定数组。 配置空间甚至不一定是全变的, 而是一个子变数的次变数 -- 称为群数, 一个子变数 -- 是一个子变数组 -- 是一个子组, 这个变数组的自动变数组在自动变数方向上显示, 以自动变数为自动变数的变数组数, 以自动变数组为自动变数, 以自动变数组为自动变数, 以自动变数组为自动变数的计算组。 以自动变数组为自动变数, 以自动变数为以自动变数的计算为自动变数, 。 自动变数组在自动变数的算算算的算法, 自动变数组的算算算算法, 算算算算算算算算算算法, 以中, 算法的算算算算法, 算算算算算算算算算算算法, 。