Although many methods have been proposed to estimate attributions of input variables, there still exists a significant theoretical flaw in masking-based attribution methods, i.e., it is hard to examine whether the masking method faithfully represents the absence of input variables. Specifically, for masking-based attributions, setting an input variable to the baseline value is a typical way of representing the absence of the variable. However, there are no studies investigating how to represent the absence of input variables and verify the faithfulness of baseline values. Therefore, we revisit the feature representation of a DNN in terms of causality, and propose to use causal patterns to examine whether the masking method faithfully removes information encoded in input variables. More crucially, it is proven that the causality can be explained as the elementary rationale of the Shapley value. Furthermore, we define the optimal baseline value from the perspective of causality, and we propose a method to learn the optimal baseline value. Experimental results have demonstrated the effectiveness of our method.
翻译:尽管提出了许多方法来估计投入变量的属性,但在掩盖属性方法方面仍然存在一个重大的理论缺陷,即很难审查掩盖方法是否忠实地代表没有投入变量。具体地说,对于掩盖属性而言,为基准值设定一个输入变量是代表不存在变量的典型方法。然而,没有研究如何代表缺少输入变量并核实基准值的准确性。因此,我们重新审视了以因果性表示的DNN特征,并提议使用因果模式来审查掩盖方法是否忠实地删除输入变量编码的信息。更重要的是,可以证明因果关系可以被解释为“沙普利值”的基本理由。此外,我们从因果关系的角度界定了最佳基线值,我们提出了一种方法来学习最佳基线值。实验结果证明了我们的方法的有效性。