We prove that for every decision tree, the absolute values of the Fourier coefficients of a given order $\ell\geq1$ sum to at most $c^{\ell}\sqrt{\binom{d}{\ell}(1+\log n)^{\ell-1}},$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant. This bound is essentially tight and settles a conjecture due to Tal (arxiv 2019; FOCS 2020). The bounds prior to our work degraded rapidly with $\ell,$ becoming trivial already at $\ell=\sqrt{d}.$ As an application, we obtain, for every integer $k\geq1,$ a partial Boolean function on $n$ bits that has bounded-error quantum query complexity at most $k$ and randomized query complexity $\tilde{\Omega}(n^{1-\frac{1}{2k}}).$ This separation of bounded-error quantum versus randomized query complexity is best possible, by the results of Aaronson and Ambainis (STOC 2015) and Bravyi, Gosset, Grier, and Schaeffer (2021). Prior to our work, the best known separation was polynomially weaker: $O(1)$ versus $\Omega(n^{2/3-\epsilon})$ for any $\epsilon>0$ (Tal, FOCS 2020). As another application, we obtain an essentially optimal separation of $O(\log n)$ versus $\Omega(n^{1-\epsilon})$ for bounded-error quantum versus randomized communication complexity, for any $\epsilon>0.$ The best previous separation was polynomially weaker: $O(\log n)$ versus $\Omega(n^{2/3-\epsilon})$ (implicit in Tal, FOCS 2020).
翻译:我们证明,对于每个决策树来说,一个给定顺序的Fleier 系数的绝对值为 $\ ell\ geq1$, 最多为 $@ lsqrt=binom{dhell} (1\ log n) / ell-1 ⁇ 美元, 美元是变量数, 美元是树深度, 美元是绝对不变的。 这个约束基本上很紧, 并解决了Tal( arxiv 2019; FOCS 2020) 的推测。 在我们工作之前的界限是 $1\ ell, 美元已经变得微不足道了 $ $\ lsqrt{sqrt{d}。 作为每整美元 $ggeq1 的应用程序, 美元是部分Boolean 函数, 美元是绑定的质质质询, $k$, 并且随机复杂 。 (n_\\\ i) i- florma\\ com_ com_ com i) 在2015年中, 最有可能将硬的硬的量量量和硬质和硬质的硬质 。